STUDY MODULE D	ESCRIPTION FORM	
Name of the module/subject (-)		Code 1010135211010512020
Field of study	Profile of study (general academic, practical)	Year /Semester
Enviromental Engineering Extramural Second	- (brak)	1/1
Elective path/specialty	Subject offered in:	Course (compulsory, elective)
Heating, Air Conditioning and And	Polish	obligatory
Cycle of study:	Form of study (full-time,part-time)	
Second-cycle studies	part-time	
No. of hours		No. of credits
Lecture: 20 Classes: - Laboratory: 10	Project/seminars:	- 3
Status of the course in the study program (Basic, major, other)	(university-wide, from another fie	eld)
(brak)	(1	brak)
Education areas and fields of science and art		ECTS distribution (number and %)
Responsible for subject / lecturer:		
dr hab. inż. Andrzej Urbaniak		

dr hab. inż. Andrzej Urbaniak email: -andrzej.urbaniak@cs.put.poznan.pl tel. 61 665 2905

Wydział Informatyki

ul. Piotrowo 3, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic terms of control engineering and informatics		
2	Skills	Student skills to describe the dynamic characteristics of objects and processes		
3	Social competencies	He has a needs of continously of knowledge actualization		

Assumptions and objectives of the course:

To teach the proper formulation of optimization problems with one or multicriteria ones.

The pesentation of new directions in the field of processes control in environmental engineering. Preparation for effective cooperation with computer and control engineers for automation

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student knows basic terms utilized in optimization problems [K2_W01]
- 2. Student understands the neccessity aplication of optimization and control in environmental engineering [K2_W01, K2_W07]
- 3. Student utilizes the mathematical modeling and simulation methods [K2_W07]
- 4. Student knows possibilities to utilization of computer tools for monitoring and control [K2_W07]

Skills:

- 1. Student formulates the optimization tasks with one or multi criteria [K2_U09]
- 2. Student describes the demands for SCADA systems for objects and processes in environmental engineering [K2_U10]
- 3. Student describes the proper action of devices and processes in algorithmic way [K2_U08, K2_U09]

Social competencies:

- 1. STUDENT: undestands the neccessity of interdisciplinary group colaboration [K2_K03]
- 2. He aprobates the neccessity of complex processes automation [K2_K07]
- 3. He understands the improtance of new information technology in environemtal engineering [K2_K01]

Assessment methods of study outcomes

Faculty of Civil and Environmental Engineering

Lecture: written test of knowledge

Laboratory exercises: activity of exercises realization, evaluation of preparation to the problem solving, written exercises protocols

Course description

Optimization problems and its technical applications. Formulation of optimization problems with one criterion. Multicriteria optimization problems. Optimization methods (analytical and numerical approach). Simplex method. Nonlinear optimization.

Computer control systems: classification, Programmable Logic Controllers (PLC), microcontrollers, embedded systems. Process monitoring (examples of solutions). Control of water treatment and wastewater treatment processes. Air conditioning control (examples of solutions). Intelligent building systems (BMS).

Basic bibliography:

- 1. G. Olsson, G. Piani: Computer in automation and control. Prentice Hall, New York 1995. 2.
- 2. 2. 1. 1.Koczyk H., Antoniewicz B., Sroczan E., Nowoczesne wyposażenie techniczne domu jednorodzinnego, PWRiL Poznań 1998 r.

Additional bibliography:

- 1. Olsson G., Newell B., Wastewater Treatment Systems Modelling, Diagnosis and Control, IWA Publ. 1999
- 2. T. Łukaszewski, A. Urbaniak, Informatyka w ochronie środowiska, Wyd. P.P., Poznań 2001.
- 3. Olszanowski A., Sozański M.M., Urbaniak A., Voelkel A. (red.), Remediacja i bioremediacja zanieczyszczonych wód i gruntów oraz wykorzystanie modelowania i technik informatycznych w inżynierii środowiska, Wyd. PP, Poznań 2001

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures	20
2. Participation in laboratory exercises	10
3. Preparation to laboratory exercises and its reporting	20
4. Preparation for exam	20

Student's workload

Source of workload	hours	ECTS
Total workload	70	3
Contact hours	30	2
Practical activities	10	1